Endotoxin Deviations: A Practical Approach for Laboratory Investigators

Owen Jamison Eli Lilly and Company

May 8th & 9th

The information to follow are examples from real deviation investigations but all recommendations, mitigation strategies, and points to consider are my own opinion and not that of Eli Lilly & Co.

May 8th & 9th

Agenda

- 1. Background
- 2. Initial Lab Investigation
- 3. Investigation Testing
- 4. OOS Handling & Approach
- 5. Overcoming Inhibition / Enhancement
- 6. Case Studies
- 7. System Suitability Issues & Mitigations
- 8. Conclusion

May 8th & 9th

PDA Tech Report 88 – Micro Deviations

- Phase I Lab Investigation or Analytical Investigation
 - QC / Lab Management / QA / SMEs
 - Goal Establish validity of atypical result & determine if lab assignable cause or not

- Phase II Manufacturing Investigation
 - Sterility Assurance / Ops / Engineering / QA / QC SME / Management
 - Goal Determine if at any part of the manufacturing process could have led to atypical result

May 8th & 9th

May 8th & 9th

Obvious Lab Errors

Sample Preparations

- Save dilutions until sample release
- Not knowingly continue a test expected to be invalidated later
- □ Right the First Time Culture

Instrument

- Audit trail reviews
- Roles & responsibilities defined & controlled

Reagents & Consumables

- □ Shown to be free of endotoxin & noninterfering
- □ Label claim qualification each shipment standards

Analyst

- □ Training & Qualification
- ❑ Analyst interview

May 8th & 9th

Interview

- Which question will lead to a better dialogue and nuances of method execution:
- "Did you follow sample preparation described in the analytical method?"
- "Describe how you executed sample preparation for the analytical method."

Practice vs Procedure gaps, lack of knowledge or training

May 8th & 9th

Conducting Interviews

• DO

Ask open ended questions

Urite questions down

- □ Ask for input from the interviewee
- □ Stimulate back and forth conversation
- Start with open ended questions then narrow down to specific yes or no

• DON'T

Ask leading questions

□ Assume or place blame

Forget to ask for feedback on the process, method, procedure, etc

May 8th & 9th

Investigational Testing for BET

Determine Validity

• Assume results are valid until proven otherwise

Formulate and test hypothesis

- Confirm or discount
- Not repeat cannot be used as final result

BET

- Testing dilution tubes contamination introduced during prep
- Repeat of original 96-well plate suspected or instrument error
- New standard preparation
- New reagent preparation
- pH

May 8th & 9th

Investigational Testing

- Reagents (LRW) \rightarrow passing Negative Control
- Hypothesis \rightarrow Contamination during sample prep
- Investigational Testing \rightarrow Confirm or Disprove Hypothesis
- Outcome \rightarrow Hypothesis confirmed

Samples	Dilution	Well	Reaction Time (sec)	Averag Time (s	e Reaction ec)	Raw EU	Results (Linear Regression) EU/mL	Release Limit
S1	1	A2	2784	2813	348 . 1	0.0357	0.0357	N/A
		B2	2841					
PPC	1	C 2	1884	1926		0.141		
		D2	1967					
	PPC Value: 0.1	% PPC	Recovery :	105%	(PPC - SA	MPLE 1) Endo	toxin Recovered : 0.105	
	A							

Outcome				
New Dilution 2 from Original	<0.0100 EU/mL			
Sample				
New Dilution 2 from Original	0.0282 EU/mL			
Dilution 1				
Original Dilution 2	0.0230 EU/mL			

May 8th & 9th

Out of Specification Handling & Approach

May 8th & 9th

OOS Investigational Testing

7 excipient samples with endotoxin activity resulting in an OOS event

Obvious lab errors	Reagents	Investigational Testing	Isolated Event?
Sample preparation Consumables Interview	Negative Controls Common reagent 50/50 v/v Dispersing/Buffer	50mM Buffer → <0.01EU/mL Dispersing Reagent Vial → 0.13EU/mL 0.5% Dispersing Reagent → 0.12EU/mL 50/50 Dispersing/Buffer → 0.05EU/mL	Vials before and after event Vendor inquiry Analyst coaching Switch lots

May 8th & 9th

Overcoming Inhibition / Enhancement

May 8th & 9th

MVD

- MVD = (endotoxin limit x sample concentration) / λ
- Guidance in <85>, <1085>, proposed <86>
 - Dilute to MVD
- Pooled samples adjustment
 - For example: MVD is 1500 but 3 vials are pooled \rightarrow 1/3 MVD is 500

May 8th & 9th

Material of Construction

Regulatory focus during inspections

Guidance from 2012 FDA Testing Questions & Answers Document Established Hold Times PETG, PS, PE EVA, ULDPE Do not use PP QC Labs need to be looped in manufacturing changes impacting sample containers

May 8th & 9th

Low PPC Deviation Investigation

- pH: 7.52 \rightarrow within recommended range
- UV analysis \rightarrow positive for protein content
 - Original sample was diluted 1:10
 - IPC DP requires 1:100

- Manufacturing Investigation (Phase II)
 - Confirmed sample pulled from wrong tank

May 8th & 9th

Low PPC Deviation Investigation

	Single supplier of rEC Peagent	Supplier	Avg. PPC Rec (%)	Number of Samples
Original Verification	 Diluent – MgCl2 	Supplier 1 Verification	97	3
		Supplier 1	96	17
		Supplier 2	51	4
Low PPC Recovery	 Secondary supplier utilized On going trend with material 	Supplier 2 Post Verification Update	91	19
Follow up method development activities	 Additional testing confirmed MgCl2 interference with 2nd supplier Updated diluent and dilution scheme to work with both suppliers Tris Buffer 	2 nd supplier verification on all commercialized molecules utilizing rFC platform		all d ing

May 8th & 9th

Beta Glucan Interference

Beta glucan interference

- Activate factor G pathway, false positive
- cellulose filter in the manufacturing process
- raw bulk materials (yeastolate)

Recombinant assays mitigate beta glucan false positive interference in LAL assays

Supplier	Reagent	Sample	Result (EU/mg)	%PPC Recovery
Supplier 2	LAL		0.0687	133
Supplier 3	LAL		>4.00	N/A
Supplier 6	LAL		0.0639	123
Supplier 1	Recombinant		<0.0400	79
Supplier 2	Recombinant		<0.0400	71
Currentian 2	Recombinant Yeastolate		<0.0400	100
Supplier 3	Recombinant		<0.0400	87
Supplier 4	Recombinant		<0.0400	56
Cumulian F	Recombinant		<0.0400	76
Supplier 5	Recombinant		<0.0400	91
Supplier 6	Recombinant		<0.0200	107

May 8th & 9th

USP <86> if approved, early adoption in Nov 2024

Recombinant chapter

- rFC end point florescence
- rCR chromogenic, absorbance

Compendia Impact

- PhEur Replacing RPT with MAT – 2026
- Could LAL be next?

May 8th & 9th

Case Study #1 – Cleaning Validation Samples

May 8th & 9th

Background

- Submitted as WFI
- Analyzed on alternate rFC platform
- Controls passed
- Rinse samples inhibited

Impact

- Multiple deviations
- Manufacturing equipment

May 8th & 9th

May 8th & 9th

pH of sample + rFC reagent

Initial Analytical Investigation

pH of control & rinse sample

Normal results:

Particulates

Bioburden

Phosphate

Conductivity

Business Continuity Plan - LAL

May 8th & 9th

Detailed Investigation

Assumption was rinse sample is equivalent to WFI

- Residual product or cleaning reagent?
- Cleaning cycle passed indicating the appropriate removal of cleaning agent and any residual product

Investigation testing

- Spectral scans: submitted cleaning samples ≠ WFI
- Trace amounts of CIP (surfactant) inhibit PPC recovery on rFC and not LAL
- Certain reagent suppliers more sensitive to interference than others

May 8th & 9th

CAPA

- Method Development
- Harmonized dilution scheme

Learning

- Consider all impacts when evaluating process change or implementing new methodologies / technologies
- Method was optimized for WFI, Clean Steam
- Assumption was rinse water = WFI

May 8th & 9th

Case Study #2 – Plate Reader PM Failure

May 8th & 9th

Background & Impact

Vendor PM

Uniformity on Fluorescence Readers

Absorbance Readers

"Tagged Out" Plate Readers

May 8th & 9th

Historical Results October 2018 – November 2023

■ Reader 1 ■ Reader 2 ■ Reader 3

May 8th & 9th

Investigational Testing

- Properly stored reagents
 - %CV = 16.2%
- Familiar Pipettes
 - Attempt 3

May 8th & 9th

Attempt 1 Attempt 2 Attempt 3

May 8th & 9th

CAPA & Summary

Impact:	 Plate Reader PM Uniformity Test failures on all 3 Micro QC lab Readers 2 weeks
Root Causes:	 Improper storage of reagents Vendor technician using equipment without training
CAPA:	 Procedural updates Network Shared Learning

May 8th & 9th

System Suitability Issues

"Invalid test should be tracked and trended to look for patterns and trends that might require a corrective action"

- Invalid assay rate
- Invalid sample rate
- %PPC Recovery
- %CV for PPC & Standard wells

How does this look for our lab?

- Document every system
 & sample control issue
- Monthly tracking of metrics
- Upper control limit established

May 8th & 9th

Mitigation Considerations

Training

- Robust Training
 Program
- Observation & Hands on
- Intervention for identified trends

Ready to Use Plates

Minimize analyst technique issues & pipette variations at small volumes

Reagent & Standards

 Monitoring standard signal / response (end point fluorescence) & reaction times (Kinetic LAL)

Instrument Optimization (Fluorescent Readers)

- Scan rate
- Sensitivity / Gain
 - Utilize entire dynamic range

Analyst

Microbial Contamination and Control Conference

May 8th & 9th

Conclusion

34

May 8th & 9th

Questions?